
Uniform Data Access Using GXD

Peter Vanderbilt*

September "22, 1999

Abstract

This paper gives an overview of GXD, a framework facilitating publi-

cation and use of data from diverse data sources. GXD defines an object-

oriented data model designed to represent a wide range of things including

data. its metadata, resources and query results. GXD also defines a data

transport language, a dialect of XML, for representing instances of the

data model. This language allows for a wide range of data source imple-

mentations by supporting both the direct incorporation of data and the

specification of data by various rules. The GXD software library, proto-

typed in Java, includes client and server runtimes. The server runtime

facilitates the generation of entities containing data encoded in the GXD

transport language. The GXD client runtime interprets these entities

(potentially from many data sources) to create an illusion of a globally

interconnected data space, one that is independent of data source location

and implementation.

1 Introduction

This paper gives an overview of GXD, Grid 1 eXtensible Data. GXD is a frame-

work consisting of three main components: a data model definition, a data format

definition and a library containing client and server APIs. Data sources logically

map their data into the data model and use the corresponding server APIs to

generate entities in the GXD format. Applications use the client APIs to access

data at the logical, data model level. The client runtime, the implementation

of the client APIs, obtains tl_e GXD-encoded entities and translates them into

the data model. All this will be described in more detail below.

The purpose of GXD is to facilitate the construction of applications that

can handle data from diverse data sources, especially those data sources that

are distributed and of heterogeneous implementation. Such applications should

enhance tile ability of scientists to form and explore new compositions of data

set s.

"MRJ Technology Solutions, NASA Ames Research Center: emaih pv @nas.nasa.gov.

t"Grid" refers to the Information Power Grid (IPC i31).

1

Tile GXD data model, discussed in section 2. is designed to represent a
wide range of things including data and its metadata, associations between

data items, infrastructure resources (such as users, machines and networks) and
GXD metamodel items (such as schemas and interface definitions). GXD is also

designed to represent the structured results of complex queries.

One of the features of GXD is that it allows an application to view scientific

data logically" as a globally interconnected set of data nodes, called the data

,space. The data space provides transparency over location and data source

implementation. While the data space can vary over time. for the purposes of

this paper we consider the data space to be immutable.

The data space is physically represented by a (large) collection of GXD

entities as published by the various data sources. These entities may be files

or they may be the outputs of programs (such as servlets or CGI programs)
that access underlying data repositories, such as databases. These entities are

encoded using GXD's data format (as described in section 3). At this level,
GXD allows data to either be incorporated directly or be described by various

rules. The GXD runtime provides the logical view by handling the task of

locating and accessing the physical entities and by interpreting their content.

The GXD APIs include those used primarily by the client and those used by

the server. The client APIs, discussed in subsection 2.3, provide access to the

data space. The server APIs, discussed in subsection a.a, are used to produce
GXD entities. Currently, the only APIs are in Java (version 1.2).

GXD is designed to support a web-like, "organic" approach to data manage-
ment. Scientists can publish their data without heavyweight, prior coordination

(with other sources) and incrementally add new data features. Over time, sites

can federate together by using common formats and publishing cross references.
Additionally. other people can create virtual data sources that add value to one
or more other data sources.

The GXD software is positioned below application code and above data

transport code such as that for HTTP and IPG [3] data management services

such as CASS [1] and SRB [4]. (Access to anything other than HTTP is not
currently implemented).

GXD is an ongoing research project and its implementation is not complete.

The current implementation is denoted "0.6" and this paper attempts to point
out those features not implemented in 0.6.

The rest of the paper is organized as follows: Section 2 describes the GXD

data model and corresponding APIs. Section 3 describes the data transport
language. Section 4 discusses additional topics such as GXD polymorphism,

interface evolution, why we didn't use XML directly and dataset dispatching.

2 The GXD Data Model

The GXD data model describes the universe of data spaces that can be rep-

resented by GXD. There are two key concepts: "nodes" and qnterfaces". A

node is a unit of (possibly" structured) information. An interface can be thought

ofasamathematicalpredicateovernodesthatadditionallyimpartssemantics.
Thesearediscussedin subsections2.1and2.2(respectively).Subsection2.3
illustratestheclientAPIsusedto accessdatamodelinstances.

2.1 Nodes

A GXD node is a logical unit of information. Nodes are either atomic or struc-
tured. The two kinds of atomic nodes are values and externals. A value node

contains a string (which possibly contains numeric or structured information).

An ezternal node is une that contains a pointer to data in the underlying pro-
gramming language: oxternals result from reading datasets as discussed in sub-
section 4.4.

The structured nodes are lists, dictionaries, methods and objects. These

contain or produce other nodes (or, actually, references to other nodes). Note

that the definition _ven here is recursive and, so, allows arbitrarily structured
nodes.

A list node contains an ordered collection of other nodes. A list has a fixed

length and elements are indexed by position. A dictionary node contains a

collection of nodes indexed by key. The keys are strings and the set of keys can

be obtained from a dictionary. A method node is logically an algorithm that,

given zero or more arguments, returns a node. (Methods are not implemented
in 0.6).

An object node contains an unordered collection of nodes indexed by property

names. A property name is an identifier possibly qualified by an interface iden-

tifier. The set of property names can be obtained from an object. Each node

named by a property name is called a property. Some properties act as attributes

of the object, providing information about the object, and some properties act

as associations, providing one or more links to other nodes.

As an example of some GXD nodes, consider figure 1. Circles are used to

,0

77

,2

?6

3Sl

7?

Figure 1: Example Weather Data Nodes

indicate collections (dictionaries if its arrows are labeled, lists if not), rounded

boxes for objects and rectangles for values. An arrow indicates that a node ref-

erences another and its label gives the corresponding key or property name. The

contentof a value node is displayed within its rectangle. The ellipsis indicates
that more nodes are referenced by the dictionary node.

Thus fi_lre 1 shows a dictionary node referring to object subnodes, the
first three of which are keyed bv the strings "SFO", "SJC" and "OAK". Each

object subnode has two value subnodes, with property names "lowTemp" and

"'highTemp". The content of the "'lowTemp" value node of the "SFO" object
node is "40"'.

Every GXD node is addressed by one or more URLs. For example, the URLs

http :llbaweather,comlwdlsfo,gxd

http:llbaweather,comlwdlsfo.gxd#SF0

http :llbaweather,comlwdlsfo,gxd#SF0&lowTemp

could address, respectively,the dictionarynode, the topmost object node and

the topmost value node of figureI. Itisplanned that every node should also

have a unique name. but thisisnot implemented in 0.6.

2.2 Interfaces

Taken alone, any given node is pretty much meaningless. Generally, in order

for an application to use data, it needs to know the potential set of data values
and how to interpret each value.

In GXD. this interpretation is specified by an interface which imposes con-

straints on GXD nodes and imparts semantics to them. A node is said to imple-

ment an interface if that node meets the constraints and semantics imposed by
the interface. A node can implement more than one interface, in which case it

must meet the union of the constraints and semantics of all its interfaces. Each

interface is named by a globally unique interface identifier which is a string
similar to a Java class name.

An interface can inherit from (or extend) another, in which case it imposes

additional constraints and stricter semantics than its "superinterface". Actu-

ally GXD allows multiple inheritance. GXD inheritance supports polymorphism,

whereby a node implementing an interface also implements all of its superinter-
faces.

Interfaces apply to all kinds of GXD nodes (not just object nodes) and all
such interfaces can be extended. Since an interface can constrain the interfaces

of its components, it can defi_e a substructure consisting of a number of nodes.

For example, review figure 1 and consider the following interface descriptions:

WeatherDataCollection: A node of interface WeatherDataCollection con-

tains information about the previous day's temperature range for various
airports around the country. In particular, a WeatherDataCollection node

is a dictionary node whose keys are airport codes and whose contents are
WeatherData nodes.

WeatherData: A WeatherData node is an object node with two (required)

properties, "lowTemp" and "highTemp", each a Temperature node giv-

ing the lowand hightemperatures(respectively)of the previousday's
weather.

Temperature: A temperaturenodeisavaluenodecontainingadecimalnum-
bergivinga temperaturein Fahrenheit.

It is possiblefor the datapublisherto assertthat the dictionaryof figure1
implementstheWeatherDataCollectioninterface.This.in turn,impliesthatall
theobjectnodesimplementWeatherDataandall the valuenodesimplement
Temperature.

It isplannedthat an interfacewill beformallydescribedbya GXD(meta)
nodecalledan interface definition but this has not been implemented in 0.6.

2.3 Client APIs

The GXD client APIs follow the data model, with a Java interface for each

GXD node type. For example, figure 2 shows the code used to print a simple

table of low temperatures for airports.

String url = "http://faa.gov/weather_data.gxd";

GxdKuntime gxd.Kuntime = GxdImpl.getDefaultRumtime();

GxdDict collection = (GxdDict) gxdRmatime.getGxdNode(url);

Iterator iter = collection.getKeys().iterator();

system.out.println("Low temperatures for US airports:");

while (iter.hasNext()) {

String airport = (String) iter.next();

GxdObject weatherData = (GxdObject) collection.get(airport);

Gxdgalue temp = (GxdValue) weatherData.getProperty("lowTemp");

system.out.println(" " + airport + " " + temp.getValue());

}

Figure 2: Example code for accessing data

The first line sets the URL, which must address a WeatherDataCollection

node such as the dictionary node of figure 1. The next line obtains a GxdRunt±me

object which encapsulates the state of the GXD runtime. The third line gets a
reference to the dictionary node, given its URL. getGxdNode (), like many GXD

operations, returns an object of (Java) interface GxdAny, the root of the GXD

node inheritance hierarchy, and so the result must be "'narrowed" to GxdDict,

the interface for dictionary nodes. From the dictionary node, an iterator over the

keys is obtained and. for each key, the get () operation is used to yield the cor-

responding object node. For each such object node, getProperty ("lowTemp")

is used to yield the corresponding value node. on which getl/alue() yields the

temperature (as a string).

3 The GXD Data Transport Language

Recall that. at any point in time, the global set of GXD nodes is called the

data space. The data space is virtual in that it is a fiction created by the GXD
runtime from data published by the various data source providers. The GXD

data transport language is the language used to publish this data. An instance

of the transport language, called an entity, is used to download some region of
the data space to a client. An entity may be a file or it may be generated on
demand.

The data language uses X*IL (the eXtensible Markup Language [6]) to pro-
vide the basic structure for GXD entities. XML consists of tagged elements

which can have attributes and can contain other elements, text or nothing.

The data language can encode GXD nodes directly or indirectly. Direct

encoding is used when a copy of the node's state is transferred. Indirect encoding
is used when some sort of rule is transferred to the client and the application of

that rule yields the node's state. Each of these encoding methods is discussed
in subsequent subsections.

3.1 Direct Encoding

Directly encoded nodes are represented using XML elements with tags cor-
responding to the node type; these tags are VALUE, OBJECT, LIST, DICT. For

example, figure 3 shows an entity encoding the "SFO" object node of figure 1.
For the convenience of the reader, the first line of each entity example contains

the entity's URL (as an XML comment).

<!-- URL: http://baweather, com/wd/sfo.gxd -->

<?xml version =''I. 0"?>

<GXDFile>

<OBJECT intf="gov, faa. WeatherData" >

<VALUE id="lowTemp '° val--"40"/>

<VALUE id="highTemp" val--"77"/>

</OBJECT>

</GXDFile>

Figure 3: Example of directly encoding 3 nodes

The second line (in this example) is the standard XML declaration element.

The GXDFile element is the top-level GXD element and exists to allow entity
metadata to be specified; the logical content starts with its only subelement. For
the remainder of this paper, the XML declarations and the GXDFile elements
will not be shown.

The OBJECT element encodes the object node; it starts on the fourth line
and ends on the seventh. It contains an intf attribute as will be discussed

shortlv. Within the element are two VALUE subelements encoding the object"s

value properties. Each of these elements has an id attribute, which contains its

property name, and a val attribute, which contains the node's value.

In general, the id attribute of an element indicates its relation to its parent.

Each subelement of an OBJECT element has an id attribute giving its property

name. Each subelement of an DICT has an id specifying its key. Subelements of

an LIST element have no id attribute as they are implicitly" indexed by numbers

(0 to size-ls,

An element can also have an intf attribute speci_'ing the set of interface

identifiers for those interfaces implemented by the corresponding node. The

above example has such an attribute on the OBJECT element to indicate that the

corresponding node implements the WeatherData interface (which is assumed to

have been defined in the gov. faa namespace). In the current version of GXD,

interface specification is optional.

3.2 Indirect Encoding

Indirect encoding in GXD involves encoding some sort of rule in place of the

actual data: the GXD runtime applies the rule to yield the specified nodes.

One form of indirect encoding is the LINK element which uses a ref attribute

containing a URL to indicate a redirection. For example, figure 4 shows a

possible encoding of the dictionary node of figure I.

<!-- URL: http://faa.gov/_eather data.gxd -->
<DICT>

<LINK id="SFO" ref="http://ba_eather.com/wd/sfo.gxd"/>

<LINK id="SJC" ref="http://baweather.com/_d/sjc.gxd"/>

<LINK id="OAK" ref="ht_p ://oak. faa. gov/wd, gxd"/>

<LINK id=" JFK" ref="http ://ny. faa. gov/wd, cgi#Kennedy"/>

<LINK id="LGA" ref="http://ny.faa.gov/wd.cgi#LaGuardia"/>

<LINK id="EWR" ref="http://ny.faa.gov/wd.cgi#Newark"/>

</DICT>

Figure 4: Example of LINK elements

Assume that the URL in-the first LINK element refers to the entity of fig-

ure 3. This LINK element specifies that the dictionary's :'SFO" subnode is

obtained b,v (recursively) decoding the entity of figure 3. The GXD runtime

takes responsibility for following these LINK elements; it uses a "lazy evalua-

tion" implementation so an entity is not read unless it is referenced. (The GXD

API also includes methods that cause the runtime to read entities at that time.)

Note that the LINK elements of figure 4 reference a distributed collection of

weather data nodes. Since the GXD handles following links_ code like that of

figure 2 can simply loop through these nodes, without concern for data location.

7

Also note that GXD can leverage the flexibility of URLs and standard web

servers, allowing for a wide range of data source implementations. For example,

the URLs of the first three LINK elements might reference files. Or they might

reference wrappers, which are CGI programs or servlets that yield GXD entities

by accessing some underlying database or service. These are all server-side

options and may, over time, be changed without affecting the client.

The last three LINKs demonstrate the ability for a link to reference an element

within a GXD entity. Assume that http://ny, faa. gov/wd, cgi is the URL for

the entity of figure 5. Then http://ny, faa. gov/wd, cgi#Kennedy refers to the

<!-- URL: http://ny.faa.gov/wd, cg_ -->
<DICT>

<OBJECT id="Kennedy">

<VALUE id="lowTemp" val="20"/>

<VALUE id="highTemp" vai="35"/>
</OBJECT>

<OBJECT id="Newark">

<VALUE id="lowTemp" val="23"/>

<VALUE id="highTemp" va1="33"/>
</OBJECT>

<OBJECT id="LaGuardia">

<VALUE id='lowTemp" val="27"/>

<VALUE id="highTemp" val="35"/>
</OBJECT>

</DICT>

Figure 5: Example data referenced by figure 4

OBJECT element with id attribute of "Kennedy". Thus the dictionary's "JFK"

subnode is obtained by decoding the entity of figure 5 and returning a reference

to the "Kennedy" subnode. The GXD runtime takes care to read an entity only

once, so there may be a pause while obtaining the "JFK" node but none while

subsequently obtaining the "LGA" and "EWR" nodes.

In the future, the GXD data language may have other mechanisms for in-

directly speci[ving nodes. One mechanism under consideration is a SCRIPT

element which would allow the inclusion of (or reference to) a script together

with some parameters: the script would be executed (with the parameters) and

the resulting nodes returned in its place. For example, a script element might

be used to generate a list of links whose references are created by interpolating

the index into a URL template.

Another mechanism under consideration is to allow a template to be asso-

ciated with a set of elements. A template is a GXD node (of a GXD-defined

interface) that contains information logically included in all elements of the set.

For example, templates might contain constant values, links (which are relative

to the target element), methods and scripts.

3.3 Server APIs

The server APIs are used to generate GXD entities. The APIs include a Java

class corresponding to each of the element types discussed in subsection 3.1 and

to LINKs as discussed in subsection 3.2, A data source implementation uses

these classes to create a tree corresponding to tim region of the data space to be

represented and calls ",_riteXml(stream) on tile root: the GXD server runtime

writes the ontity content on the stream stream.

The server classes are designed to allow for flexibility" of implementation. For

instance, the constructor for the dictionary class takes any instance of the Java

interface j ava.utii.Map, allowing the implementor to pick the most suitable

class implementing Map.

4 Advanced Topics

4.1 Polymorphism

In subsection 2.2, it was mentioned that GXD supports polymorphism, whereby

a node implementing an interface also implements all of its superinterfaces. For

example, assume that there is an interface, AirportConditions, that inherits

from WeatherData (of subsection 2.2) and adds properties for wind and pre-

cipitation. The data publisher might upgrade the entity of figure 3 to have
the content of figure 6. The code of figure 2 (which indirectly references this

<!-- URL : h t tp ://baweat her. co_/wd/s f o. gzd -->

<OBJECT intf="AirportConditions ,WeatherData">

<VALUE id="_indDirection" vaI="NNE"/>

<VALUE id="windSpeed" val="6"/>

<VALUE id="1owTer.p" val="40"/>

<VALUE id="highTemp" val='77"/>

<VALUE id="precip" val-"0"/>

</OBJECT>

Figure 6: Example of GAD polymorphism

entity) would work as before, by simply ignoring the extra properties. At the

same time. other code (devel6"ped to the AirportConditions interface) could take

advantage of the additional fields to provide advanced flmctionality.

4.2 Interface Evolution

It is expected that the definition of interfaces will be an evolutionary endeavor.

Initially. independent groups will define interfaces. As understanding matures,

these groups will need to modify interfaces (or create new ones). Also differ-

ent groups will collaborate and wish to have common interfaces, thus creating

interfaces with a union of the capabilities of the independently-created ones.

Theschemeplanned[orGXD (after0.6)is to allowan interfaceto havea
collectionof reviswns,eachdenotedbya revision number, and to allow nodes to

implement a range of revisions. Thus a data source publisher can publish data

in a range of revisions allowing it to support both older and newer applications.

Similarly, an application can be implemented to handle a range of revisions, so
that it can handle both older and newer data sources.

4.3 Why not use XML directly?

GXD puts a layer over XML. To see this, compare figure 3 to figure 7 which is

one way to encode the same information directly in XML. In figure 7, "Weath-

erData" is the tag of an element enclosing two subelements, respectively tagged
"[owTemp'" and "highTemp" and containing the values "40" and "77".

<i-- URL: http://baweather, com/wd/sfo.zml -->

<?xml version="l.O"?>

<WeatherData>

<lowTemp>40</lowTemp>

<highTemp>77</highTemp>

</WeatherDa_a>

Figure 7: Direct encoding of figure 3 in XML

The problem with the GXD encoding, as illustrated by figure 3, is that

GXD's constrained use of XML inhibits leveraging some of the technology as-

sociated with XML. But there are several advantages to the GXD encoding, as
discussed in the remainder of this subsection, which (we believe) outweigh the
disadvantages.

One advantage is that putting a layer over XML allows the kinds of indirec-

tions discussed in subsection 3.2. When encoding directly in XML, any kind of
indirection must be handled by the client. By having the GXD runtime handle

it instead, the client is greatly simplified. W'e believe that the combination of

templates, links and scripts will allow encoding techniques far beyond what one

would get using direct XML encoding. This allows for a wide range of data

source implementations and allows them to evolve without affecting existing
clients.

A second advantage has Co do with inheritance and polymorphism, as dis-
cussed in subsection 4.1. In particular, GXD allows a node of some subinterface

to be used wherever a node of a certain interface is expected. To do this in

"'valid" XML. where instances must conform to a type definition (known as a
"'DTD"), the direct XML encoding corresponding to figure 6 would include an

element for "windDirection" which would fail the validity tests for the DTD
corresponding to WeatherData.

Even with "well-formed", DTD-less XML, there is a related problem: what

should be the tag for the direct XML encoding of figure 6, "WeatherData" or

"'AirportConditions"': If "AirportConditions" is used, code understanding only

10

thebasetypewill n¢_trecognizetheelement.But if "_WeatherData"is used,
codeunderstandingthederivedtypegetsnocluethattheelementhasadditional
(derivedtype)data. GXD getsaroundthis by movinginterfacespecification
intoanattributethat containsa listof interfaceids.

TherearesimilarissueswithdirectXML encodingsof nodesimplementing
multipleinterfacesandimplementingmultiplerevisionsof interfaces.

Finally.it is hopedthat translationbetweena directXML encodingand
thecorrespondingGXDencodingwill beeasy.In particular,a SCRIPTelement
shouldallowoneto representa regionof thedataspacedirectlyin XNILby
specifyinga ._criptthat readsXMLandyieldsGXDnodes.Similarly.it should
bestraightforwardto writeGXD-to-XNILtranslatorsfor variousinterfaces.

4.4 Dataset Handling

WhileGXDis goodfor representingmetadataandsomedata,its encodingis
too inefficientfor largequantitiesof data. InsteadGXD facilitatesaccessto
scientificdatain its nativeformat(suchasHDF[2]or PLOT3D[5]). In 0.6.
theGXDtransportlanguageincludesan indirectionelement,taggedI)ATASET,
which,whenencounteredbytheruntime,causesanapplication-specifieddataset

handler to be invoked. This dataset handler is given the contents of the I)/IThSET

element and returns a GXD node. Typically, this result node is the root of some

substructure containing external nodes. The external nodes point to in-memory

structures resulting from reading the specified data.

However. experience has shown that this upcall mechanism is too limiting
and not helpful enough. Instead, post-0.6 there will be set of interfaces for

dataset descriptors. A dataset descriptor is an object node that contains meta-

data for accessing a scientific dataset in its native format. The object's interface

specifies the format of the data (such as HDF or PLOT3D) and its content typ-

ically contains a URL plus whatever metadata is needed to interpret the data

referenced bv the URL. An application would read the data itself, using tools

provided by GXD such as those for handling URLs or for dispatching based on

a dataset descriptor's interface.

5 Conclusion

In summary. GXD is middleware that allows data from diverse data sources to be

published in a common data format, using common protocols. This potentially

allows applications to synthesize data from several distributed, heterogeneous

data sources. The GXD data mode[allows for standardized interpretation of

data and the GXD client APIs allow applications to access the data without

regard for data source location or implementation. The GXD transport language

provides a flexible way to download regions of the data space to a client.

The current implementation of GXD (0.6) has server-side APIs, for creating

instances of the GXD transport language, and client-side APIs. for handling

these entities and providing the virtual data model. Implemented are value,

11

external,list. dictionaryandobjectnodesandLINKandDATASETelements.
Thissoftwareisof prototypequality.

PlansforGXDincludeimplementingthemechanismsmentionedpreviously
suchasmethods,templates,interfacerevisioning,formalinterfacedefinitions,
uniquenodenamesandscriptelements.Weare"alsoworkingwithusersto try
to determineausefulsetof commonbaseinterfaces.

FormoreinformationaboutGXD.contacttheauthor.

References

[1] The Gtobus Project (www.globus.org). Global Access to Secondary Storage

(GASSy. http://www.globus.org/gass/.

[2] The National Center for Supercomputing Applications. Hierarchical Data

Format (HDF). http://hdf.ncsa.uiuc.edu/.

[3] Numerical Aerospace Simulation Systems (NAS)Division of NASA. Infor-

mation Power Grid. http://www.nas.nasa.gov/IPG/.

[4] San Diego Supercomputing Center (SDSC). Storage Resource Broker (SRB).

http: / /www.npaci.edu/DICE /SRB /.

[5] P. Walatka, P. Buning, L. Pierce, and P. Elson. PLOT3D User's Manual.

National Aeronautics and Space Administration, July 1992. NASA Technical
Memorandum 101067.

[6] World Wide Web Consortium (W3C). Extensible Markup Language (XML)

1.0 (REC-xml-19980210). http://www.w3.org/TR/REC-xml.

12

